شرحدرسالأعدادالمركبة(ComplexNumbers)
2025-08-23 22:13دمشقالأعدادالمركبةهيأحدالمفاهيمالأساسيةفيالرياضيات،وتلعبدورًامهمًافيالعديدمنالتطبيقاتالعلميةوالهندسية.فيهذاالمقال،سنتعرفعلىتعريفالأعدادالمركبة،خصائصها،وكيفيةالتعاملمعهافيالعملياتالحسابيةالمختلفة.شرحدرسالأعدادالمركبة
1.ماهيالأعدادالمركبة؟
الأعدادالمركبة(ComplexNumbers)هيأعدادتتكونمنجزئين:جزءحقيقي(RealPart)وجزءتخيلي(ImaginaryPart).يُكتبالعددالمركبعادةًبالصيغة:
[z=a+bi]
حيث:
-aهوالجزءالحقيقي.
-bهوالجزءالتخيلي.
-iهيالوحدةالتخيلية،وتحققالعلاقة(i^2=-1).
2.العملياتالأساسيةعلىالأعدادالمركبة
الجمعوالطرح
لجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصل:
[(a+bi)+(c+di)=(a+c)+(b+d)i]
[(a+bi)-(c+di)=(a-c)+(b-d)i]
الضرب
يتمضربالأعدادالمركبةباستخدامخاصيةالتوزيعمعالأخذفيالاعتبارأن(i^2=-1):
[(a+bi)\cdot(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i]
القسمة
لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقام(ComplexConjugate)لتبسيطالمقامإلىعددحقيقي:
[\frac{ a+bi}{ c+di}=\frac{ (a+bi)(c-di)}{ c^2+d^2}]
3.التمثيلالهندسيللأعدادالمركبة
يمكنتمثيلالعددالمركب(z=a+bi)كنقطةفيالمستوىالإحداثي(المستوىالمركب)،حيث:
-المحورالأفقييمثلالجزءالحقيقي.
-المحورالرأسييمثلالجزءالتخيلي.
4.الصيغةالقطبيةللأعدادالمركبة
يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:
[z=r(\cos\theta+i\sin\theta)]
حيث:
-rهوالمقدار(Modulus)ويُحسببالعلاقة(r=\sqrt{ a^2+b^2}).
-θهيالزاوية(Argument)وتُحسببالعلاقة(\theta=\tan^{ -1}\left(\frac{ b}{ a}\right)).
5.تطبيقاتالأعدادالمركبة
تستخدمالأعدادالمركبةفيالعديدمنالمجالاتمثل:
-الهندسةالكهربائية:تحليلالدوائرالكهربائية.
-الفيزياء:دراسةالموجاتوالإشارات.
-الرسوماتالحاسوبية:تمثيلالحركاتالدورانية.
الخلاصة
الأعدادالمركبةتوسعمفهومالأعدادالحقيقيةوتوفرأدواتقويةلحلالمعادلاتالتيليسلهاحلولفينطاقالأعدادالحقيقية.بفهمأساسياتهاوتطبيقاتها،يمكنالاستفادةمنهافيمجالاتمتعددة.
شرحدرسالأعدادالمركبةإذاكنتبحاجةإلىمزيدمنالتوضيحأوتمارينتطبيقية،لاتترددفيالسؤال!
شرحدرسالأعدادالمركبة